
Generic scaling relation in the scalar  model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 8011

(http://iopscience.iop.org/0305-4470/29/24/024)

Download details:

IP Address: 171.66.16.71

The article was downloaded on 02/06/2010 at 04:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/24
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 8011–8023. Printed in the UK

Generic scaling relation in the scalarφ4 model
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‡ Department of Theoretical Physics, Sankt-Petersburg State University, St Petersburg, Russia
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Abstract. The results of an analysis of the one-loop spectrum of the anomalous dimensions of
composite operators in the scalarφ4 model are presented. We give a rigorous constructive proof
of the hypothesis on the hierarchical structure of the spectrum of anomalous dimensions—the
naive sum of any two anomalous dimensions generates a limit point in the spectrum. Arguments
in favour of the non-perturbative character of this result and the possible ways of generalizing
it to other field theories are briefly discussed.
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1. Introduction

The theory of critical phenomena is one branch of physics where renormalization group (RG)
methods have been very fruitful. It is now well established that the system at the phase
transition point possesses a number of remarkable properties. The most important of these
are the universality of the critical behaviour of physically different systems [1] and scale
and even conformal invariance of the correlation functions [2]. The effectiveness of RG
methods in the description of critical phenomena (the calculation of correlation functions,
critical exponents, etc) is mainly explained by these properties [3].

However, the most impressive results had been obtained in two-dimensional conformal
field theories. It was realized [4] that the restrictions posed by conformal invariance in the
2D case are highly non-trivial and lead (in principle) to the full description of the spectrum
of the critical exponents. It would also be very interesting to understand which algebraic
structure can be found ind-dimensional conformal field theories. However, beyond two
dimensions conformal symmetry is well known to yield less stringent conditions. Therefore
many problems ind-dimensional (d > 2) conformal field theory still remain unresolved.

In the recent papers [6, 7, 8, 9], analysis of the spectrum of the critical exponents in the
O(N)-vector model in 4− ε dimensions has been carried out in the framework of one-loop
order perturbation theory. Due to relative simplicity of this model it appeared possible to
obtain the exact solution of the eigenvalue problem for some classes of composite operators
(see [6, 8]). In particular, analytical solutions have been obtained for the spectrum of the
critical exponents of symmetric and traceless operators with number of fieldsn 6 4 and
arbitrary number of derivativitesl. All these solutions reveal the distinctive regularity in
the behaviour of the critical dimensions at largel. Moreover, the numerical analysis carried
out in [7, 9] showed that the same regularity—the sum of two points of the spectrum of
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the critical exponents being the limit point of the latter—also holds for a wider class of
operators.

In the present paper we give a rigorous proof of this property. In what follows we will
restrict ourselves to the scalarφ4 theory and consider the spatially symmetric and traceless
operators only. However, all results will be valid for the class ofO(N) and spatially
symmetric and traceless operators in theN -vector model [7].

Before proceeding with calculations we would like to discuss the main troubles which
arise in the analysis of the spectrum of anomalous dimensions (where anomalous dim.=
full scaling dim.− canonical dim.) of large spin operators. It is easy to understand that the
source of all difficulties is the mixing problem. Indeed, a long time ago Callan and Gross
proved a very strong statement concerning the anomalous dimensions of the twist-2 (where
(twist = dimension− spin) operators [10] for which the mixing problem is absent. They
obtained the result that for all orders of the perturbation theory the anomalous dimensionλl
of the operatorφ∂µ1 · · · ∂µlφ tends to 2λφ at l → ∞ (whereλφ is the anomalous dimension
of the fieldφ).

Let us see what prevents the generalization of this result, even on the one-loop level,
for the case of higher-twist operators. Although calculating the mixing matrix is not very
difficult, extraction of the information about eigenvalues of the latter needs a considerable
amount of effort. Indeed, if one does not have any idea about the structure of the
eigenvectors, the only way to obtain the eigenvalues is to solve a characteristic equation.
This, however, is an almost hopeless task. Nonetheless, let us imagine that one has a guess as
to the form of an eigenfunction; then there are no problem with evaluating the corresponding
eigenvalue. (Note that the exact solutions in [6, 8] and [5], where the analogous problem
was investigated for the twist-3 operators in QCD were obtained precisely in this manner.)
Thus the more promising strategy is to guess an approximate structure of eigenfunctions
in the ‘asymptotic’ region. However, the simple criterion for determining whether a given
vector is close to some eigenvector exists only for Hermitian matrices (see section 2).

Thus for the successful analysis of the asymptotic behaviour of anomalous dimensions
two ingredients, namely the hermiticity of the mixing matrix and a proper ansatz of the test
vector, are essential. It is not evident that first condition can be satisfied at all. However,
for the model under consideration one can choose the scalar product in a such way that a
mixing matrix will be Hermitian [6, 7]. Some arguments in favour of it being possible in
the general case will be given in section 4. As to the choice of the test vector, this will be
discussed below.

The paper is organized as follows: in section 2 we shall introduce notation, derive some
formulae and give the exact formulation of the problem; section 3 is devoted to the proof of
the theorem about asymptotic behaviour of anomalous dimension, which is the main result
of this paper; in the last section we discuss the results obtained.

2. Preliminary remarks

It was shown in [6, 7] that the problem of calculation of anomalous dimensions of
the traceless and symmetric composite operators in the scalarφ4 theory in the one-loop
approximation is equivalent to the eigenvalue problem for the Hermitian operator H acting
on a Fock spaceH:

H = 1

2

∞∑
n=0

1

n+ 1

n∑
i=0

a
†
i a

†
n−i

n∑
j=0

ajan−j . (2.1)
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Here a†
i , ai are the creation and annihilation operators with the standard commutation

relations [ai, a
†
k] = δik. The eigenvalues of H and the anomalous dimensions of

composite operators are simply related:γan = ε/3 · λ + O(ε2). There is also a one-to-
one correspondence between the eigenvectors of H and the multiplicatively renormalized
composite operators [7].

It can easily be shown that H commutes with theN -particle operator and with the
SL(2, C) group generators S, S+, S−:

[S−,S] = S− [S+,S] = −S+ [S+,S−] = 2S. (2.2)

They can be written as

N =
∞∑
j=0

a
†
j aj S =

∞∑
j=0

(j + 1/2) · a†
j aj S− =

∞∑
j=0

(j + 1) · a†
j aj+1 (2.3)

and S+ = −S†
−.

Furthermore, due to the commutativity of H with theSL(2, C) generators, each of the
subspacesHl

n andH̄l
n ∈ Hl

n (n, l = 0, . . . ,∞), namely

Hl
n = {ψ ∈ H|Nψ = nψ ,Sψ = (l + n/2)ψ} H̄l

n = {ψ ∈ Hl
\|S−ψ = 0} (2.4)

are invariant subspaces of the operator H. Since every eigenvector fromHl
n which is

orthogonal toH̄l
n has the form [8]:

|ψ〉 =
∑
k

ckS
k
+|ψλ〉 |ψλ〉 ∈ H̄l

n

to obtain all spectrum of the operator H it is sufficient to solve the eigenvalue problem for
H on eachH̄l

n separately.
Moreover, there exists a large subspace of the eigenvectors with zero eigenvalues in

eachH̄l
n. They have been completely described in [7] and will not be considered here.

As for non-zero eigenvalues, although at finitel the spectrum of H has a very
complicated structure (the numerical results for particular values ofn and l are given
in [7, 9]), at largel considerable simplifications take place, as will be shown below.

The main result of the present work can be formulated in the form of the following
theorem.

Theorem 1.Let the eigenvectorsψ1 ∈ H̄r
n andψ2 ∈ H̄s

m (ψ1 6= ψ2) of the operator H have
the eigenvaluesλ1 andλ2, respectively. Then there exists a numberL such that for every
l > L there exists eigenvectorψl ∈ H̄l

(m+n) with the eigenvalueλl such that

|λl − λ1 − λ2| 6 C
√

ln l/ l (2.5)

whereC is some constant independent ofl. In the case whereψ1 = ψ2 the same inequality
holds only for evenl > L.

The proof is based on a simple observation. Since any of subspacesH̄l
n has a finite

dimension, operator H restricted on̄Hl
n has only point-like spectrum. In this case it can be

easily shown that if there is a vectorψ , for which the condition

‖(H − λ̃)ψ‖ 6 ε‖ψ‖ (2.6)

is fulfilled, then there exists the eigenvectorψλ (Hψλ = λψλ), such that|λ−λ̃| 6 ε. Indeed,
expanding a vectorψ in the basis of the eigenvectors of Hψ = ∑

k ckψk we obtain

ε‖ψ‖ > ‖(H − λ̃)ψ‖ =
(∑

k

(λk − λ̃)2c2
k

)1/2

> min
k

|λk − λ̃| · ‖ψ‖.
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So, to prove the theorem it is sufficient to find out in each subspaceH̄l
n+m a vector

which satisfies the corresponding inequality. Note that these arguments are not applicable
to a non-Hermitian matrix.

Before proceeding to the proof, we give another formulation of the eigenvalue problem
for the operator H. Let us note that there exists a one-to-one correspondence between the
vectors fromHl

n and the symmetric homogeneous polynomials in degreel of n variables:

|9〉 =
∑
{ji }
cj1,...,jna

†
j1

· · · a†
jn

|0〉 → ψ(z1, . . . , zn) =
∑
{ji }
cj1,...,jnz

j1
1 · · · zjnn (2.7)

the coefficientcj1,...,jn being assumed totally symmetric. It is evident that this mapping can
be continued to all space.

The operators S, S+, S− and H in then-particle sector take the form [8]:

S =
n∑
i=1

(zi∂zi + 1
2) S− =

n∑
i=1

∂zi

S+ = −
n∑
i=1

(z2
i ∂zi + zi) H =

n∑
i<k

H(zi, zk).

(2.8)

The action two-particle Hamiltonian H(zi, zk) on the functionsψ(z1, . . . , zn) reads

H(zi, zk)ψ(. . . , zi, . . . , zk, . . .) =
∫ 1

0
dα ψ(. . . , αzi + (1 − α)zk, . . . , αzi + (1 − α)zk, . . .).

(2.9)

It should be stressed that not only H, but also every H(zi, zk) commutes with S,S+,S−.
For further calculations it is very convenient to put into correspondence with every

function of n variables another one by the following formula [8]:

ψ(z) =
∑
{ji }
cj1,...,jnz

j1
1 · · · zjnn → φ(z) =

∑
{ji }
(j1! · · · jn!)−1cj1,...,jnz

j1
1 · · · zjnn . (2.10)

The functionψ can be expressed in terms ofφ in the compact form

ψ(z1, . . . , zn) = φ(∂x1, . . . , ∂xn)

n∏
i=1

1

(1 − xizi)

∣∣∣∣
x1=...=xn=0

. (2.11)

Then one obtains the following expression for the scalar product for two vectors fromHl
n:

〈ψ1|ψ2〉H = n! · φ1(∂z1, . . . , ∂zn)ψ2(z1, . . . , zn)|z1=...=zn=0. (2.12)

It is now easy to check that the operators S, S+, S−, H on the space of the ‘conjugated’
functionsφ(z1, . . . , zn) look like

S =
n∑
i=1

(zi∂zi + 1
2) S+ =

n∑
i=1

zi S− = −
n∑
i=1

(zi∂
2
zi

+ ∂zi ) (2.13)

Hφ(z1, . . . , zn) =
∑
i<k

∫ 1

0
dα φ(z1, . . . , (1 − α)(zi + zk)

(i)

, . . . , α(zi + zk)
(k)

, . . . , zn). (2.14)

Up to now we have assumed the functionsψ(z1, . . . , zn) to be totally symmetric.
However, in what follows we shall deal with non-symmetric functions as well. To treat
them on equal footing it is useful to enlarge the region of the definition of the operators
S, S+, S−, H up to the space of all polynomial functionsB = ⊕∞

n,l=0 Bln, whereBln is
the linear space of the homogeneous polynomials of degreel of n variables with the scalar
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product given by (2.12). Then the Fock spaceH will be isomorphic to the subspace of
the symmetric functions ofB; the subspaceH̄l

n will also be isomorphic to the subspace
of the symmetric homogeneous translation invariant polynomials of degreel of n variables
B̂ln ∈ Bln.

3. Proof of theorem 1

3.1. Part 1

Let us consider two eigenvectors of H:ψ1 ∈ H̄r
n andψ2 ∈ H̄s

m (Hψ1(2) = λ1(2)ψ1(2) ); and
let ψ1(x1, . . . , xn) andψ2(y1, . . . , ym) be the symmetric translation-invariant homogeneous
polynomials corresponding to them, of degreer and s respectively. To prove the theorem
it is enough to pick out in the subspaceB̂ln+m (or, the same, in thēHl

n+m) the function, for
which the inequality (2.6) holds.

Let us now consider the following (still non-symmetric) function:

ψl(x, y) =
l∑

k=0

ck(AdkS+)ψ1(x)(Adl−kS+)ψ2(y) (3.1.1)

where ck = (−1)kClk · Cl+A+B
k+A (Clk is the binomial coefficient),A = n + 2r − 1,

B = m + 2s − 1, AdS+ = [S+, ·], and where for brevity we have used the notation
ψl(x, y) for ψl(x1, . . . , xn, y1, . . . , ym), andψ1(2)(x) for ψ1(2)(x1, . . . , xn(m)).

Using equation (2.2) it is easy to check that the functionψ given by (3.1.1) is translation
invariant, i.e. S−ψ

l(x, y) = 0.
To construct the test function we symmetrizeψl(x, y) over all x andy:

ψl
S(x, y) = Sym{x,y}ψl(x, y) = n!m!

(n+m)!

m∑
k=0

∑
{i1<···<ik}{j1<···<jk}

ψ
(i1...ik)

(j1...jk)
(x, y) (3.1.2)

whereψ(i1...ik)

(j1...jk)
(x, y) is obtained fromψl(x, y) by interchangingxi1 ↔ yj1, and so on. Also,

without loss of generality, hereafter we taken > m. ( For the casesm = 1 andn = 1(2)
the expression for theψl

S(x, y) yields the exact eigenfunctions, so one might hope that it
will also be a good approximation in other cases.)

The corresponding expression for the ‘conjugate’ functionφl(x, y) looks more simple.
Really, taking into account that S+φ(· · ·) = (x1 + · · · + xn)φ(· · ·) one obtains

φl(x, y) = φ1(x)φ2(y)K(a, b)expa

( n∑
i=1

xi

)
expb

( m∑
j=1

yj

)∣∣∣∣∣
a=b=0

(3.1.3)

where

K(a, b) ≡
l∑

k=0

ck∂
k
a ∂

(l−k)
b . (3.1.4)

Then, with the help of equations (2.11), (3.1.3) the following representation for the
functionψl(x, y) can be derived:

ψl(x, y) = φ1(∂ξ )φ2(∂η)K(a, b)
∏
i,j

1

(1 − xi(a + ξi))

1

(1 − yi(b + ηi))

∣∣∣∣∣
(a,b,ξi ,ηj )=0

. (3.1.5)

Now we will show that the inequality (2.6) withλ = λ1+λ2 andε = C
√

ln l/ l holds for
the functionψl

S(x, y). As was mentioned before, this is sufficient to the prove the theorem.



8016 S É Derkachov and A N Manashov

Our first task is to obtain the estimate from below of the norm of the functionψl
S(x, y)

for large values ofl. Using equations (2.12), (3.1.5) and taking into account the fact that
ψ
p

S (x, y) is totally symmetric, one gets

‖ψl
S‖2 = n!m!

m∑
k=0

∑
{i1<···<ik}{j1<···<jk}

φl(∂x, ∂y)ψ
(i1...ik)

(j1...jk)
(x, y) = n!m!

m∑
k=0

CnkC
m
k A

(k)
l . (3.1.6)

The coefficientsA(k)l are given by the equation

A
(k)
l = Nφl(∂x, ∂y)ψ

(1...k)
(1...k) (x, y),= Nφ1(∂xi )φ2(∂yi )K(a, b)ψ

(1...k)
(1...k) (x, y + b − a)

(3.1.7)

where the symbolN means that all arguments must be set to zero at the end of calculation.
The substitution of (3.1.3), (3.1.5) in (3.1.7) yields

A
(k)
l = Nφ1(∂x)φ2(∂y)φ1(∂x̄)φ2(∂ȳ)K(a, b)K(ā, b̄)

[ m∏
i=k+1

1

(1 − (ȳi + b̄ − ā)(yi + b))

×
k∏
i=1

1

(1 − (ȳi + b̄ − ā)(xi + a))(1 − x̄i (yi + b))

n∏
i=k+1

1

(1 − x̄i (xi + b))

]
.

(3.1.8)

The expression in the square brackets in (3.1.8) depends only on the differenceb̄− ā; hence

K(ā, b̄)

[
· · ·

]
ā,b̄...=0

=
(∑

k

(−1)kck

)
∂l
b̄

[
· · ·

]
ā,b̄...=0

.

In the resulting expression the dependence onb̄ can be factorized after the appropriate
rescaling of the variablesx, y, x̄, ȳ, a, b. Finally, taking advantage of (2.11) and
remembering that the functionψ1, ψ2 (but notφ(· · ·)) are translation invariant, one gets

A
(k)
l = ZNφ1(∂xi )φ2(∂yi )K(a, b)Fk(a, b, x, y) (3.1.9)

whereZ = l!
∑l

k=0 ck(−1)k = l!C2l+A+B
l+A and

Fk(a, b, x, y) =
[
ψ1(y1, . . . , yk, xk+1 + a − b, . . . , xn + a − b)

k∏
i=1

1

1 − xi − a

×
m∏

i=k+1

1

1 − yi − b
(1 − a)−sψ2

×
(

x1

1 − x1 − a
, . . . ,

xk

1 − xk − a
,
yk+1 + b − a

1 − yk+1 − b
, . . . ,

ym + b − a

1 − ym − b

)]
.

(3.1.10)

It is easy to understand that after the differentiation with respect toxi, yj the resulting
expression will have the form

A
(k)
l = ZNK(a, b)

∑
n1,n2,n3

Ckn1,n2,n3

(a − b)n1

(1 − a)n2(1 − b)n3
= Z

∑
n1,n2,n3

Ckn1,n2,n3
Akn1,n2,n3

(l)

(3.1.11)
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the summation overn1, n2, n3 being carried out in the limits, which as well as the
coefficientsCkn1,n2,n3

are independent of the parameterl. Thus, all dependence onl of

A
(k)
l , except for the trivial factorZ, is contained in the coefficientsAkn1,n2,n3

.
Our further strategy is as follows. First of all, we shall obtain the result for the quantity

A
(0)
l and forA(m)l . (These terms gives the main contributions to the norm of the vectorψl

S .)
Then, we shall show (it will be done in the appendix) that for all otherA

(k)
l (1 6 k 6 m−1)

the ratioA(k)l /A
(0)
l tends to zero as 1/l2 at least.

To calculateA(0)l it is sufficient to note that after the appropriate shift of the arguments
in the functionsψ1 andψ2 the expression forF0(a, b, x, y) (equation (3.1.10)) reads[
ψ1(x1, . . . , xn)

m∏
i=1

1

1 − yi − b
(1 − b)−sψ2

(
y1

1 − y1 − b
, . . . ,

ym

1 − ym − b

)]
. (3.1.12)

Then carrying out the differentiation with respect toxi, yj in (3.1.9) one obtains

A
(0)
l = Z(m!n!)−1‖ψ1‖2‖ψ2‖2NK(a, b)(1 − b)−(2s+m) = (m!n!)−1A(l) (3.1.13)

whereA(l) = C2l+A+B
l+A l!(l + A+ B)!‖ψ1‖2‖ψ2‖2/(A!B!).

The evaluation ofAml in the case wheren = m = k differs from that considered above
only in the interchange of variablesx, a ↔ y, b in (3.1.12), this resulting in

A
(m)
l = Z|〈ψ1|ψ2〉|2NK(a, b)(1 − a)−(2s+m) = (−1)lA(0)l δψ1ψ2. (3.1.14)

Here, we take into account thatψ1, ψ2 are the eigenfunctions of the self-adjoint operator.
Thus, whenl is odd andψ1 = ψ2 these two contributions (A(0) andA(m)) cancel each other.
However, as one can easily see from (3.1.1), the functionψl(x, y) is identically equal to
zero in this case.

In the case wherek = m andm < n, the expression forA(m)l (equation (3.1.11)) takes
the formA

(m)
l = ZNK(a, b)

∑r
n1=s C

(m)
n1
(a − b)n1−s(1 − a)−(s+n1+). After some algebra

one obtains

A
(m)
l = A(l)

r−s∑
k=0

k∑
i=0

C̃k,iC
l
iC

l+B+k−i
l+A−i 6 C · A(0)l /ln−m 6 CA

(0)
l / l. (3.1.15)

For all otherA(k)l (0 < k < m) we are able to derive the following estimate (see the
appendix for details):|A(k)l | 6 CkA

(0)
l / l

2, (here theCk are some constants). Then, taking
into account this result together with equations (3.1.13), (3.1.14) (3.1.15), one obtains

‖ψl
S‖2 = (1 + (−1)lδψ1,ψ2)A(l)(1 + O(1/l)). (3.1.16)

3.2. Part 2

To complete the proof one should obtain the following inequality for largel:

ε(l) = ‖δHψl
S‖2 = ‖(H − λ1 − λ2)ψ

l
S‖2 6 C ln l/ l2A(l). (3.2.1)

First of all, let us show thatε(l)(l) can be estimated as follows:

ε(l) 6 (mn)2〈ψl(x, y)H(x1, y1)ψ
l(x, y)〉. (3.2.2)

Indeed, using representation (3.1.2) forψl
S in (3.2.1) and taking into account the invariance

of the operator H under any transposition of its arguments (see equation (2.8)) one gets

(ε(l))1/2 = n!m!

(n+m)!

∥∥∥∥ m∑
k=0

∑
{i1<···<ik}{j1<···<jk}

δHψ(i1...ik)

(j1...jk)
(x, y)

∥∥∥∥ 6 ‖δHψl(x, y)‖. (3.2.3)
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Moreover, from equations (2.8), (3.1.1) the equalityδHψl(x, y) = ∑
i,k H(xi, yk)ψ

l(x, y)

immediately follows. Then to obtain (3.2.2) it is sufficient to note that

‖H(xi, yk)ψl(x, y)‖2 = ‖H(x1, y1)ψ
l(x, y)‖2 = 〈ψl(x, y)H(x1, y1)ψ

l(x, y)〉.
In turn, with the help of equations (3.1.3), (3.1.5), the matrix element in (3.2.2) can be

represented in a form similar to that forAkl (equation (3.1.11)):

〈ψl(x, y)H(x1, y1)ψ
l(x, y)〉 = Z(n+m)!K(a, b)φ1(∂x)φ2(∂y)

n∏
i=2

1

1 − axi

m∏
i=2

1

1 − byi

×
∫ 1

0
ds

1

1 − aθ(s)

1

1 − bθ(s)
ψ1

(
θ(s)

1 − aθ(s)
,

1

1 − axi

)

×ψ2

(
θ(s)

1 − bθ(s)
,

1

1 − byi

)∣∣∣∣
x=0,y=1
a=b=0

(3.2.4)

whereθ(s) = sx1 + (1 − s)y1. Differentiating with respect toxi, yj , i, j > 1 one gets

〈· · ·〉 =
r∑

n1=0

r∑
n2=n1

s∑
m1=0

s∑
m2=0

s−m1∑
m3=0

cn1n2
m1,m2,m3

ãn1n2
m1,m2,m3

(l) (3.2.5)

where the coefficientscn1n2
m1,m2,m3

do not depend onl, but

ãn1n2
m1,m2,m3

(l) = ZK(a, b)

[
an2−n1

(1 − b)β−m2
∂n1
x ∂

m1
y

∫ 1

0
ds

θn2+m2

(1 − aθ)n2+1(1 − bθ)m2+1

]
x=0,y=1
a=b=0

(3.2.6)

andβ = s +m3 +m− 1.
Before applying the operatorK(a, b) = ∑l

k=0 ck∂
k
a ∂

l−k
b to the expression in the square

brackets it is convenient to rewrite the latter in a form more suitable for this purpose:[
· · ·

]
= (n2!m2!)−1 an2−n1

(1 − b)β−m2

∫ 1

0
ds sm1(1 − s)n1∂n2

a ∂
m2
b ∂

(m1+n1)
s

1

(1 − as)(1 − bs)
.

(3.2.7)

Now all differentiations with respect toa andb can be carried out easily:

∂ka a
n2−n1∂n2

a

1

(1 − as)

∣∣∣∣
a=0

= (k + n1)!s
k+n1∂n2−n1

x xk
∣∣
x=1

∂l−kb

1

(1 − b)β
∂
m2
b

1

(1 − sb)
= sm2

(l − k + β)!

0(β −m2)

∫ 1

0
dα αβ−m2−1(1 − α)m2[α + (1 − α)s]l−k.

Finally, after a representation of the ratio of the factorials like(k + n1)!/(k + A)! in the
form 1/0(A− n1) = ∫ 1

0 du uk+n1(1 − u)A−n1−1, the summation overk becomes trivial and
we obtain the following expression forãn1n2

m1,m2,m3
(l):

ãn1n2
m1,m2,m3

(l) = A(l)an1n2
m1,m2,m3

(l) (3.2.8)

where

an1n2
m1,m2,m3

(l) = 1

0(A− n1)0(β −m2)0(B − β)
∂n2−n1
x

×
∫ 1

0
· · ·

∫ 1

0
ds dα du dv un1(1 − u)A−n1−1sm1(1 − s)n1∂n1+m1

s sn1+m2vβ
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×(1 − v)B−β−1αβ−m2−1(1 − α)m2[v(α + (1 − α)s)− sux]l
∣∣∣∣
x=1

. (3.2.9)

Note that when the arguments of the0 functions become equal to zero, the following
evident changes must be made: 1/0(A − n1)

∫
du (1 − u)A−n1−1 · · · → ∫

du δ(1 − u) if
A = n1, and so on. Taking account of (3.2.8), equation (3.2.5) now reads

〈ψl(x, y)H(x1, y1)ψ
l(x, y)〉 = A(l)

r∑
n1=0

r∑
n2=n1

s∑
m1=0

s∑
m2=0

s−m1∑
m3=0

cn1n2
m1,m2,m3

an1n2
m1,m2,m3

(l). (3.2.10)

Thus to prove the inequality (3.2.1) forε(l) we need only show that the coefficients
an1n2
m1,m2,m3

(l) tend to zero atl → ∞ no more slowly than lnl/ l2.
First of all, let us consider the cases where at least one0 function in (3.2.9) has a zero

argument. (It is worth recalling thatA = 2r + n− 1, B = 2s +m− 1; n, m (m 6 n) are
the numbers of variables andr, s are respectively the degrees of the translation invariant
polynomialsψ1 andψ2).

1. A = n1. It is evident that this equality is possible only whenn = 1, r = 0, and
hencem = 1, s = 0. Then one immediately obtains the result that the arguments of two
other0 functions are also zero, and the corresponding integral (see equation (3.2.9) and the
note to it) is zero.

2. β − m2 = 0, n > 1 (0 < A − n1). In this case one obtainsm = 1, s = 0 and
B − β = 0. Since two of the0 functions have arguments equal to zero, the integrations
over v andα are removed. After this it is trivial to check thata(l) tends to zero as 1/l2 at
l → ∞.

3. B − β = 0 and 1< m 6 n. These conditions imply thatm1 = 0 andm3 = s.
Again the integration overv is removed. To calculatea(l), let us write∂n2−n1

x in (3.2.9) as
un2−n1∂n2−n1

u and carry out the integration by parts as overu as well as overs. Note that
the boundary terms do not appear whenm1 = 0. Then it is clear that integrand represents
the product of two functions, one of which, [(α + (1 − α)s) − su]l , is positive definite in
the region of integration and the other is the sum of the monomials likesi1(1 − s)i2αi2 · · ·
with finite coefficients and, hence, can be limited by some constant independent ofl. Then,
taking into account this remark, one obtains the following estimate fora(l):

|an1n2
m1,m2,m3

(l)| 6 C

∫ 1

0
ds dα du [(α + (1 − α)s)− su]l = 2C[ψ(l + 2)− ψ(1)]

(l + 1)(l + 2)
(3.2.11)

whereψ(x) = ∂x ln0(x).
4. Finally, we consider the case when all arguments of0 functions in (3.2.9) are greater

then zero. As in the previous case it is convenient to replace∂n2−n1
x by un2−n1∂n2−n1

u and
fulfil the integration overu and s by parts. However, the boundary terms arise now with
the integration overs at upper bound (s = 1). However, it is not hard to show that each
of them decreases as 1/l2 at l → ∞. (All calculations practically repeat those given in the
appendix.)

The last term to be calculated has the form

I (l) =
∫ ∫ ∫

ds dα du dv A(s, α, u, v)[v(α + (1 − α)s)− su]l (3.2.12)

where A(s, α, u, v) is some polynomial of the variabless, α, u, v , such that
|A(s, α, u, v)| < C in the domain 06 s, α, u, v 6 1.



8020 S É Derkachov and A N Manashov

To derive the necessary estimate in the case of evenl it is sufficient to replace
A(s, α, u, v) in (3.2.12) by a constantC. For odd l, integral under consideration can
be estimated from above in the following way:

I (l) 6 C

(∫
�+

−
∫
�−

)
ds dα du dv [v(α + (1 − α)s)− su]l

where the regions�+ and�− are determined from conditions: [v(α+ (1− α)s)− su] > 0
or < 0, respectively. The evaluation of the corresponding integrals does not cause any
trouble and leads to the following result:

I (l) 6 C ln l/ l2. (3.2.13)

Then, taking into account equations (3.2.1), (3.2.2), (3.2.10) and (3.1.16), one concludes
that there exist such constantsL andC that the inequality

‖(H − λ1 − λ2)ψ
l
S‖2 6 C ln l/ l2‖ψl

S‖2 (3.2.14)

holds for all l > L. This inequality, as shown in section 2, guarantees the existence of the
eigenvector of the operator H with the eigenvalue satisfying (2.5). �

4. Conclusions

The theorem proved in the previous section provides a number of consequences for the
spectrum of the operator H:

• Every point of the spectrum is either a limit point of the latter or an exact eigenvalue
of infinite multiplicity.

• Any finite sum of eigenvalues and limit points of the spectrum is a limit point again.

These statements follow directly from the theorem.
Furthermore, let us denote bySn the spectrum of the operator H restricted onn-particle

sector of Fock space, (Nψ = nψ) and byS̄n the set of the limit points ofSn. Then it is easy
to see that the definite relations (‘hierarchical structures’) betweenSn, S̄n (n = 2, . . .∞)
exist. Indeed, let6n is the set of all possible sums ofsi1 + si2 + · · · + sim type, where
sik ∈ Sk and i1 + · · · + im 6 n, i1 6 i2 6 n · · · 6 im. Then one can easily conclude that
6n ⊂ S̄n. For n = 2, 3 the stronger equations6n = S̄n hold, but the examination of this
conjecture for a generaln requires additional analysis.

It should also be noted that the structure of the spectrum bears some resemblance
(this may be purely speculative) to those in 2D conformal field theories. The well known
peculiarity of 2D CFT is that all admissible states can be divided into definite classes,
namely Verma modules. The dimensions of state (the critical exponents of the corresponding
observables) in each Verma module differ one from another by an integer. Moreover, there
exists a large class of so-called minimal models, in which the number of Verma modules (or,
the same, primary fields) is finite [4]. Let us now look at the spectrum of critical exponents
in φ4 theory. Although the ‘naive addition law’ of the anomalous dimensions can hardly
be combined with the finiteness of the spectrum, the structures having some similarity with
the Verma module are easily noticed. Indeed, one can conclude from the theorem that there
exist groups of operators whose full scaling dimensions differing one from another by an
‘almost integer number’:1l −1l′ = l − l′ + O(1/min(l, l′)).

Below we give some evidence in favour of the claim that the results obtained are
common to generalD-dimensional CFT, and not specific only to theφ4 model. In this case
it will be very interesting to elucidate what changes in the structure of spectrum happen at
D → 2.
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Moreover, there exists the problem with high-gradient composite operators in 2+ ε

expansion, where the technique developed here might appear to be useful. It has been
noticed that in various models (theQ-matrix model [11],N -vector model [12], unitary
matrix model [13] and orthogonal matrix model [14]) a certain class of canonically irrelevant
composite operators with 2l gradients acquires anomalous dimensions to first order inε(l)

that grow with s2 and thus endangers the stability of the non-trivial fixed points. (The
two-loop calculations carried out in [15] make the stability problem even worse.)

Finally, we would like to discuss two question:

1. What properties of the one-loop spectrum of anomalous dimensions in theφ4 model
survive to a higher order of the perturbation theory?

2. To what extent are they conditioned by the peculiarity of theφ4 theory?

As to the first question we can only adduce some arguments in favour of a non-
perturbative character of the obtained results. In [9] the spectrum of the critical exponents
of theN -vector model in 4− ε dimensions was investigated to second order inε. In this
work it was shown that some one-loop properties of the spectrum, in particular a generic
class of degeneracies [7, 8], are lifted to two-loop order. However, the results of the
numerical analysis of critical exponents carried out for the operators with number of fields
6 4 distinctly show that a limit-point structure of the spectrum is preserved.

The other evidence in favour of this hypothesis can be found in the works of Lang
and R̈uhl [16]. They investigated the spectrum of the critical exponents in the nonlinear
σ -model in 2< d < 4 dimensions to first order in the 1/N expansion. The results for
various classes of composite operators [16] display the existence of a similar limit-point
structure in this model for the whole range 2< d < 4. Since the critical exponents should
be consistent in the 1/N expansion for theσ -model and the 4− ε expansion for the(φ2)2

model, one may expect this property of the spectrum to hold to all orders in theε.
To answer the second question it is useful to understand what features of the model

under consideration determine the properties of the operator H (hermiticity, invariance
underSL(2, C) group, two-particle type of interaction) were crucial to the proof of the
theorem. The first two properties are closely related to the conformal invariance of theφ4

model [17]. It can be shown that a two-particle form of the operator H and the conformal
invariance of a theory lead to hermiticity of H in the scalar product given by 2.12. (The
relation between the functionsψ andφ in the general case is given in [18].) Furthermore, it
should be emphasized that the commutativity of H with S and S+ reflects two simple facts:
(i) Non-trivial mixing occurs (inφ4 theory) only between operators with an equal number
of fields. (ii) The total derivative of a eigenoperator is an eigenoperator with the same
anomalous dimension as well. However, if the operator H is Hermitian it must commute
with the operator conjugated to S+ as well. So the minimal group of invariance of H
(SL(2, C) in our case) has three generators.

One can see that hermicity andSL(2, C) invariance of the operator H follow directly
from the conformal invariance of theφ4 model. Thus, the method of analysis of anomalous
dimensions presented here is not peculiar toφ4 theory, but can be applied to other conformal-
invariant field theories.
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Appendix

In this appendix we calculate the quantitiesA(k)l for 1 6 k 6 m − 1. Let us recall the
representation forA(k)l (see equation (3.1.11)):

A
(k)
l = ZNK(a, b)

∑
n1,n2,n3

Ckn1,n2,n3

(a − b)n1

(1 − a)n2(1 − b)n3
= Z

∑
n1,n2,n3

Ckn1,n2,n3
A(k)n1,n2,n3

.

The summation overn1, n2, n3 is carried out in the following range:

n1 = m1 +m2 n2 = k + s +m1 +m3 n3 = s +m− k +m2 −m3

0 6 m1 6 min [s, r] 0 6 m2 6 s 0 6 m3 6 r −m1.

The simpler way of obtaining these bounds from (3.1.10) is to treat(a−b), (1−a), (1−b)
as independent variables.

Then, taking advantage of the Feynman’s formula for the product(1 − a)−n2(1 − b)−n3

(starting from here we shall omit all inessential multipliers that are independent ofl), one
obtains

A(k)n1,n2,n3
∼

l∑
k=0

ck∂
k
a ∂

(l−k)
b

∫ 1

0
dx xn2−1(1 − x)n3−1∂n1

x [1 − ax − (1 − x)b]−B−1. (A.1)

Now, for a time, we assume thatr 6 s. Then to obtain the final expression forA(k)n1,n2,n3

one needs to carry out the integration by parts in (A.1) (note that there are no boundary
terms in the caser 6 s) and, using the integral representation for the ratio of the factorials
arising from the differentiation with respect toa, b, x, carry out the summation over k:

A(k)n1,n2,n3
∼

B−1∑
j=n3−n1−1

αj
(l + B)!(l + B + A)!

(l + j + 1)!

∫ 1

0
du dv uA−1(1 − v)jvB−j−1(u− v)l.

(A.2)

Here, theαj are some inessential constants. It is evident that the leading contributions to the
integrals in (A.2) come from regions where|(u−v)| ' 1 (u ' 1, v ' 0 andu ' 0, v ' 1)
and tend to zero atl → ∞ as l−A−1 and l−B+j−1, respectively. Then, taking into account
that s− r+m−k−1 6 j 6 B−1 and collecting all necessary terms, one obtains the result
that the contribution fromA(k)n1,n2,n3

to theA(k)l is of orderA(l)/ l2. Thus we have obtained
the required result for the caser 6 s.

To derive the estimate forA(k)l in the cases 6 r in the manner described above, we
change the basic formula forA(k)l —eq.(3.1.7) slightly. Using the property of translation
invariance of functionψl(x, y), one can rewrite the right-hand side of (3.1.7) in the
following way: Nφ1(∂xi )φ2(∂yi )K(a, b)ψ

(1...k)
(1...k) (x + a − b, y). Then the further calculations

simply repeat those for the caser 6 s and lead to the same estimate forA(k)l .
Thus, we show that the inequality

|A(k)l | 6 constant× A
(0)
l / l

2

holds for all 16 k 6 m− 1.



Generic scaling relation in the scalarφ4 model 8023

References

[1] Wilson K G and Kogut J 1974Phys. Rep.C 12
[2] Polyakov A M 1970 Pis’ma Zh. Exp. Teor. Fiz.12 538
[3] Zinn-Justin J 1990Quantum Field Theory and Critical Phenomena(Oxford: Clarendon)
[4] Belavin A A, Polyakov A M and Zamolodchikov A B 1984 Nucl. Phys.B 241 333
[5] Ali A, Braun V M and Hiller G 1991Phys. Lett.266B 117
[6] Kehrein S K, Wegner F J and Pis’mak Yu M 1993Nucl. Phys.B 402 [FS] 669
[7] Kehrein S K and Wegner F J 1994Nucl. Phys.B 424 [FS] 521
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